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Motivated by the recent interest in nonequilibrium phenomena in quantum many-body systems, we study
strongly interacting fermions on a lattice by deriving and numerically solving quantum Boltzmann equations
that describe their relaxation to thermodynamic equilibrium. The derivation is carried out by inspecting the
hierarchy of correlations within the framework of the 1/Z expansion. Applying the Markov approximation, we
obtain the dynamic equations for the distribution functions. Interestingly, we find that in the strong-coupling
limit, collisions between particles and holes dominate over particle-particle and hole-hole collisions—in stark
contrast to weakly interacting systems. As a consequence, our numerical simulations show that the relaxation
timescales strongly depend on the type of excitations (particles or holes or both) that are initially present.
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I. INTRODUCTION

In interacting quantum many-body systems, the nature of
the excitations and their relaxation to the thermodynamic
equilibrium state [1,2] display a large diversity, and may vary
from system to system, depending both on the dimensionality
and on the specific interactions [3–13]. Here, we are interested
in quantum systems in which the excitations can be described
as quasiparticles. This raises the question of whether the
quasiparticles interact in such a way that their incoherent
scattering processes finally lead to their equilibration. In other
words, we ask if, and under which conditions, it is possible
to construct a quantum Boltzmann equation that describes
the collisions between quasiparticles. For weak interactions,
a famous example is of course the Fermi liquid [14,15]
of electrons subject to Coulomb interaction in three spatial
dimensions. The quasiparticles are electrons and holes, pos-
sibly with a renormalized mass, that interact via two-particle
scattering in a screened Coulomb potential [16]. However, for
strongly interacting electrons, as typically found in transition-
metal oxides or nitrides, already the electronic ground state
may differ strongly from the weakly interacting case (for a
review, see, e.g., Ref. [17]), and the relaxation kinetics of
quasiparticle excitations remains elusive. Hence, the general
principles of the nonequilibrium relaxation are an active re-
search topic up to date [18]. In the following, we restrict our
discussion to closed quantum lattice systems without disorder
and dissipation. This means that equilibration is supposed
to proceed solely by intrinsic interactions. Yet, there is rich
physics to be found: While the lifetime of excitations in a
Fermi liquid follows a generic law, it turns out that relaxation
in a quantum system with strong interactions may proceed
via several intermediate stages and thus on widely different
timescales, see, e.g., Refs. [19–23].

In this work, we show for a particular example that even
in the strongly interacting limit the kinetic equation describ-
ing thermalization still has the mathematical structure of a

quantum Boltzmann equation, albeit with a different phys-
ical interpretation of the collision term, see also Ref. [24].
Specifically, we study a lattice model of spinless fermions
with interactions between neighboring lattice sites. In the
limit of strong interactions, giving rise to a gapped excitation
spectrum, we find that electron-hole scattering is the dominant
relaxation mechanism, in striking contrast to the conven-
tional Fermi liquid, where hole-hole and electron-electron
interactions contribute on equal footing with electron-hole
interactions to the overall relaxation rate.

Spinless fermions are considered as a very simple model
epitomizing the features of a metal-insulator transition
[25,26]. In applications to the electronic structure of materials,
the model may be applicable to crystalline solids with partial
band filling in the independent electron approximation, but
strong on-site Coulomb repulsion, which guarantees that each
lattice site will be occupied only once, and double occupancy
by electrons of opposite spin can be ignored at sufficiently low
excitation energies. In addition, in a solid with a less than half-
filled band, sufficiently strong on-site Coulomb interaction
gives rise to a ferromagnetic ground state [27]; i.e., all spins
are aligned and, as a first approximation, the spin degree of
freedom can be neglected. It is noteworthy that ultra-cold
atoms in an optical lattice offer another possibility to realize
the model studied here, provided that the repulsion between
atoms at the same lattice site is sufficiently strong to preclude
multiple occupation. In this case, the trapped atoms may be
considered effectively as spinless fermions independent of
their actual spin. In addition, we note that, in the context of
ultracold atoms, spinless fermions interacting indirectly via
additional bosons have been considered [28,29].

In the center of our interest are lattice systems with a
high coordination number Z (which means in practice, lat-
tices in high dimensions). This is in contrast to the physics
in one-dimensional systems, where the quasiparticle picture
is often not suitable as a starting point for further analy-
sis. The peculiar thermalization behavior of one-dimensional
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systems has been extensively studied in recent work, see,
e.g., Refs. [30–36]. In the opposite limit of high dimension-
ality, several authors used nonequilibrium Green functions
on the two-time Keldysh contour as the starting point of
their description. The Kadanoff-Baym equation [37] for these
Green functions is then solved either numerically or with the
help of some approximations, see, e.g. Ref. [38]. In popular
approaches, the thermalization behavior is described by a
self-energy that is taken from dynamic mean-field theory [39].
While this is appropriate in the limit of very high dimen-
sionality, it usually neglects momentum conservation and the
dependence of the scattering rates, and hence the self-energy,
on the momentum transfer in the collision [21]. Finally,
schemes based on the usual BBGKY hierarchy can only treat
weak and moderate interactions, see, e.g., Ref. [24], while we
are mainly interested in strong interactions. Thus derivations
of Boltzmann equations for strongly interacting many-body
systems on higher-dimensional lattices, as considered here,
would be highly nontrivial using other methods.

The structure of the paper is as follows. After defining the
model of spinless fermions, we briefly recapitulate the deriva-
tion of the Boltzmann equation [24] in the weakly interacting
case, making use of the Born-Markov approximation [40,41].
Next, we introduce correlation functions in the spirit of the
BBGKY hierarchy of nonequilibrium statistical mechanics
[42–44], but with the important difference that we consider
the correlations between lattice sites instead of those between
particles. We show that an expansion in 1/Z allows us to
define the spectrum of quasiparticle excitations at the Z−1

level, while the higher orders of the expansion give rise to
interactions among quasiparticles and offer a natural way to
close the BBGKY-like hierarchy of equations. We discuss the
solutions for translationally invariant systems, in particular for
the nontrivial example of the correlated ground state on a bi-
partite lattice. Kinetic equations are worked out explicitly for
the limit of strong interaction. If, in addition, the interaction
is also short-ranged and extends to nearest-neighbor lattice
sites only, the interaction between quasiparticles is found to
be strongly anisotropic. We illustrate the consequences of the
anisotropic interactions by numerically solving the kinetic
equation. In contrast to the well-known Fermi liquid with
isotropic Coulomb interaction, thermalization of quasiparti-
cles displays several timescales due to the dependence of the
collisions on momentum transfer. In particular, this behavior
is observed when the initial distributions of quasiparticles and
quasiholes differ strongly from each other.

II. THE MODEL

We consider spinless fermions [17,25] moving on a lattice
given by the hopping matrix Jμν and repelling each other via
the Coulomb matrix Vμν

Ĥ = − 1

Z

∑
μ,ν

Jμν ĉ†
μĉν + 1

2Z

∑
μ,ν

Vμν n̂μn̂ν . (1)

As usual, ĉ†
μ and ĉν are the fermionic creation and annihilation

operators for the lattice sites μ and ν with the corresponding
number operators n̂μ = ĉ†

μĉμ. Furthermore, Z denotes the co-
ordination number of the translationally invariant lattice, i.e.,

the number of nearest neighbors. In the following, we consider
nearest-neighbor interaction and tunneling for simplicity, but
our results can be generalized in a straight forward manner.

In the limit of small interactions Vμν , the ground state of
(1) can be described by a Fermi gas and is thus metallic
for 0 < 〈n̂μ〉 < 1. For large interactions Vμν , however, the
structure of the ground state changes. Assuming half filling
and a bipartite lattice, we have a spontaneous breaking of the
translational symmetry where one sublattice is occupied while
the other sublattice is empty (up to small virtual tunneling
corrections), which is usually referred to as a charge density
wave—quite analogous to the famous Mott insulator state in
the Fermi-Hubbard model, see, e.g., Refs. [45].

III. WEAK-INTERACTION LIMIT

Let us start by briefly recapitulating the conventional
derivation of the Boltzmann equation in the limit of weak
interactions, see, e.g., Ref. [41]. After a spatial Fourier trans-
form ĉμ → ĉk, the relevant distribution functions fk are just
the occupation numbers per mode k and their time derivative
reads according to (1)

i∂t fk = i∂t 〈ĉ†
kĉk〉 = −

∫
p

∫
q

Vq(〈ĉ†
kĉ†

pĉp+qĉk−q〉corr

−〈ĉ†
k−qĉ†

p+qĉpĉk〉corr ) , (2)

where we have defined the four-momentum correlators
via 〈ĉ†

kĉ†
pĉk′ ĉp′ 〉corr = 〈ĉ†

kĉ†
pĉk′ ĉp′ 〉 + 〈ĉ†

kĉk′ 〉〈ĉ†
pĉp′ 〉 − 〈ĉ†

kĉp′ 〉
〈ĉ†

pĉk′ 〉. To first order in the interaction strength Vq, their time
derivative reads

i∂t 〈ĉ†
kc†

pcp+qck−q〉corr

= (Jk + Jp − Jk−q − Jp+q)〈ĉ†
kc†

pcp+qck−q〉corr

− (Vq − Vk−p−q)

× [ fk fp(1 − fk−q)(1 − fp+q) − ( fk fp ↔ fk−q fp+q)].

(3)

Abbreviating these four-momentum correlators by Ckpq, the
above equation can be cast into the simple form i∂tCkpq =
�kpqCkpq − Skpq with the source term Skpq containing the
distribution functions fk. Formally, this linear equation has
the retarded solution

Ckpq(t ) = i
∫ t

−∞
dt ′ Skpq(t ′) exp{−i�kpq(t − t ′)} . (4)

In order to arrive at the Boltzmann equation which is local in
time, we now employ the Markov approximation Skpq(t ′) ≈
Skpq(t ) in the above integrand, which can be motivated by the
fact that the distribution functions are slowly varying. Then
(4) can be solved approximately

Ckpq(t ) ≈ Skpq(t )

�kpq − iε
, (5)

where the infinitesimal convergence factor ε > 0 is inserted
in order to pick out the retarded solution. As usual, the
limit ε ↓ 0 yields the principal value plus a delta distribution.
The principal value corresponds to the adiabatic solution of
i∂tCkpq = �kpqCkpq − Skpq ≈ 0, while the delta distribution
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contributes at �kpq = 0 where adiabaticity breaks down. This
is the term which generates the Boltzmann collision term,
where �kpq = 0 corresponds to energy conservation. Insert-
ing the approximate solution (5) back into (2) yields the
well-known Boltzmann equation (see, e.g., Ref. [41])

∂t fk = −2π

∫
p

∫
q

Vq(Vq − Vk−p−q)

× δ(Jk + Jp − Jk−q − Jp+q)

× [ fk fp(1 − fk−q)(1 − fp+q) − ( fk fp ↔ fk−q fp+q)].

(6)

Here, q denotes the momentum transfer, i.e., particles with
initial momenta k and p collide and are scattered to the final
momenta k − q and p + q or vice versa. The delta distribution
in the second line represents energy conservation in such a
collision process and the factor in the first line yields the
differential cross section. As is well known, this equation
respects the conservations laws of energy, momentum and
probability, as well as consistency conditions (such as the
crossing relation) and has far reaching consequences such as
the H theorem, see, e.g., Ref. [46].

IV. HIERARCHY OF CORRELATIONS

In the above derivation, we exploited the assumption of
weak interaction in two ways: first, by employing a perturba-
tive expansion in Vμν in Eq. (3), and, second, by applying the
Markov approximation (5). This approximation is based on
the separation of timescales, i.e., the distribution functions fk
are slowly varying (on a timescale set by Vμν) in comparison
to the rapid oscillations in (4) with the frequencies �kpq which
are set by Jμν . For strong interactions, this procedure is no
longer applicable. However, we will show in the following
that the coordination number of lattice sites in high dimen-
sions can be used in a similar way to establish a systematic
expansion.

The framework for deriving this expansion is provided by
the hierarchy of correlations [47–54]. In this approach, one
considers the reduced density matrices ρ̂μ for one site, ρ̂μν

for two sites, and so on. Multisite density matrices will in
general not be simple products of the single-site quantities. We
therefore split off the difference due to correlations between
sites, i.e., we write ρ̂corr

μν = ρ̂μν − ρ̂μρ̂ν , and analogously for
multisite correlations. The time-dependence of correlations
can be cast into the following hierarchy of evolution equa-
tions:

∂t ρ̂μ = f1
(
ρ̂ν, ρ̂

corr
μν

)
, (7)

∂t ρ̂
corr
μν = f2

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ

)
, (8)

∂t ρ̂
corr
μνσ = f3

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ , ρ̂corr
μνσλ

)
, (9)

∂t ρ̂
corr
μνσλ = f4

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ , ρ̂corr
μνσλ, ρ̂

corr
μνσλζ

)
, (10)

and in complete analogy for the higher correlators [47].
To derive a systematic expansion, we consider the hierar-

chy of correlations in the formal limit of large coordination
numbers Z → ∞. Following Ref. [47], it can be shown that

the n-site correlators are by a factor 1/Z smaller than n − 1-
site correlators. For instance, starting from the on-site density
matrix ρ̂μ = O(Z0) as the zeroth order, two-site correlators
are smaller, ρ̂corr

μν = O(1/Z ). Furthermore, the three-site cor-
relators are suppressed even stronger via ρ̂corr

μνσ = O(1/Z2),
and so on. The decreasing role of higher-order correlators
justifies an approximative scheme based on a truncation of the
hierarchy at some specific level even without having to invoke
any separation of timescales, ergodicity, or other supportive
arguments. In physics language, an iterative approximation
scheme can be described as follows: We start from a mean-
field solution ρ̂0

μ which is obtained to zeroth order in 1/Z by
neglecting ρ̂corr

μν on the right-hand side of (7) and equating
∂t ρ̂μ ≈ f1(ρ̂ν, 0). Next, we insert this solution ρ̂0

μ into (8)
and obtain, to first order in 1/Z , the approximation ∂t ρ̂

corr
μν ≈

f2(ρ̂0
ν , ρ̂

corr
μν , 0) This provides us with a set of inhomogeneous

linear differential equations for the two-point correlations
ρ̂corr

μν . The stationary solutions of this set can be considered
as the quasiparticle modes; and in this way, the quasiparticle
energy spectrum is obtained.

However, aiming at the derivation of a quantum
Boltzmann equation, it is clear that we have to go further.
This can be understood from the following considerations.
The quasiparticles resulting from a truncation at the level of
(8) are noninteracting; hence (8) is insufficient to derive a
Boltzmann collision term to first order in 1/Z . In other words,
a set of differential equations linear in the variable ρ̂corr

μν ,
such as ∂t ρ̂

corr
μν ≈ f2(ρ̂0

ν , ρ̂
corr
μν , 0) can not describe collisions.

Therefore we need to study higher orders in 1/Z and and
interpret the interactions between the quasiparticles arising
on this level as collision terms. The above derivation of a
quantum Boltzmann equation for weak interactions already
suggests that one should not stop on the level of the three-
point correlators ρ̂corr

μνσ that enter into the right-hand side of
(8). Due to the structure of the Coulomb interactions, we have
to include the four-point correlators, too, in order to derive the
Boltzmann equation (see below).

To arrive at a consistent treatment up to order 1/Z2, one
should also insert the solution for ρ̂corr

μν , once it has been
obtained, back into equation (7). A similar argument can be
applied to ρ̂corr

μνσ which should be inserted into (8) to obtain an
improved quasiparticle spectrum. We speak of this procedure
as taking into account the back-reactions. In physical terms,
this amounts to a renormalization of the mean-field descrip-
tion by ρ̂0

μ due to the quasiparticle fluctuations. For the case
considered in the following application, a small perturbation
around the charge-density wave state at half filling, the back-
reactions play a minor role, and they will be omitted in the
following.

A. Translation-invariant systems

In this section, we specialize to spatially homogeneous
systems. Consequently, we re-formulate the equations in the
Fourier space of wave vectors. As starting point of the hi-
erarchy, we first need to specify the on-site density matrix
ρ̂μ or its zeroth-order (mean-field) approximation ρ̂0

μ. Further
specializing to the case of a half-filled band, Eq. (7) has the
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simple solution

ρ̂μ = 1
2 (|0〉〈0| + |1〉〈1|) = 1

2 1μ . (11)

Due to the assumed spatial homogeneity and particle number
conservation, this solution is actually unique and hence there
is no back-reaction; i.e., ρ̂μ = ρ̂0

μ.
As in Eq. (2), the distribution functions fk are given by the

relevant two-point correlations 〈ĉ†
μĉν〉corr via

〈ĉ†
μĉν〉 = 〈ĉ†

μĉν〉corr + δμν〈n̂μ〉 =
∫

k
fkeik·(xν−xμ ) . (12)

Then, Eq. (8) implies

i∂t fk =
∫

q
Vk+q(gqk − gkq) , (13)

where the gqk denote the Fourier components of the relevant
three-point correlations

〈n̂α ĉ†
β ĉγ 〉corr =

∫
p

∫
q

gpqeip·(xβ−xα )+iq·(xγ −xα ) . (14)

The time-derivatives of the three-point correlators can be
obtained from (9) and have a form similar to (3)

i∂t gqk = (Jq − Jk )gqk + S(3)
qk , (15)

but, in contrast to (3), the source term S(3)
q,k contains four-point

correlations (instead of distribution functions)

〈ĉ†
α ĉβ ĉ†

μĉν〉corr =
∫

k

∫
p

∫
q

hkpq

× eik·(xα−xν )+ip·(xβ−xν )+iq·(xμ−xν ) . (16)

Finally, their time-derivative reads according to (10)

i∂t hkpq = (Jk − Jp + Jq − Jk+p+q)hkpq + S(4)
kpq , (17)

where the source term S(4)
kpq contains products of two-point

correlators, somewhat similar to (3).
Now we may integrate the evolution equations (15) and

(17) in the same way as in (4), which yields a double
time integral. In order to approximate this integral, we again
use the Markov approximation: Since the two-point correla-
tions 〈ĉ†

μĉν〉corr scale with 1/Z but the three-point correlators

〈n̂α ĉ†
β ĉγ 〉corr scale with 1/Z2, the distribution functions fk

are slowly varying according to (13), because the right-hand
side is suppressed by an additional factor of 1/Z . (To first
order in 1/Z , the distribution functions fk are constant.) In
contrast, the Fourier components of the three-point gqk and
four-point hkpq contributions are rapidly oscillating with the
frequencies �qk = Jq − Jk as well as �kpq = Jk − Jp + Jq −
Jk+p+q according to Eqs. (15) and (17). Using this separation
of timescales, the double time integral can be evaluated within
Markov approximation in analogy to (5) by simplifying the
integrand according to fk(t ) ≈ fk(t ′).

Inserting this solution of the double time integral back into
Eq. (13), we obtain a Boltzmann equation which has exactly
the same form as in (6). This is perhaps not too surprising
since we did not assume that the interactions Vμν are strong.
In fact, the on-site state (11) could represent free (or weakly
interacting) fermions in their ground state (or in a thermal
state). As a crucial difference, however, the above derivation

FIG. 1. Sketch of a square lattice with a checker-board pattern
as an example for a charge-density wave state (left) with a quasi-
particle (middle) and quasihole (right) excitation. By definition of
the model, the original fermions (blue dots) can only move to the
nearest neighboring lattice sites, i.e., one step in horizontal or vertical
direction, but not along the diagonal. Due to the strong repulsion
V , a quasiparticle (middle) and quasihole (right) can only move
to next-to-nearest neighboring lattice sites, which involves second-
order tunneling processes such as co-tunneling of two fermions
(middle) or sequential tunneling of one fermion (right). We also see
that neither two quasiparticles (middle) nor two quasiholes (right)
can occupy nearest neighboring lattice sites.

of the Boltzmann equation is based on an expansion into
powers of 1/Z instead of Vμν . Thus the above 1/Z-derivation
can also be applied to the strongly interacting case.

B. Mean-field solutions with broken symmetry

Let us now consider the limit of strong interactions Vμν .
Next, we choose as a reference a mean-field solution that
necessarily depends on the type of lattice and the filling
factor. Assuming a bipartite lattice at half filling, the ground
state is a Mott-type insulator [17] since the fermions mainly
occupy one sublattice, and tunneling to the other sublattice
is suppressed by the repulsion Vμν . Thus we start with the
mean-field ansatz

�̂0
μ =

{|0〉〈0| = 1μ − n̂μ for μ ∈ A
|1〉〈1| = n̂μ for μ ∈ B , (18)

where A and B denote the two sublattices. This ansatz asserts
different occupation of each sublattice and thus breaks the
translational symmetry of the original problem. Physically,
this would correspond to a charge density wave. In a square
lattice or in the two-dimensional principal lattice planes of
cubic or hypercubic lattices, for example, the fermions would
form a checker-board pattern, see Fig. 1.

In this case, the proper treatment of the correlations
〈ĉ†

μĉν〉corr requires a case distinction. One needs to distinguish
which of the two sublattices μ and ν belong to. In the follow-
ing, we denote these sublattices by calligraphic superscripts,
e.g., for μ ∈ A and ν ∈ B, the expectation value 〈ĉ†

μĉν〉 is
given by the Fourier transform of f AB

k , and analogously for
other combinations of superscripts. The on-site equation (7)
then determines the back-reaction of the correlations onto
the mean field via i∂t 〈n̂A〉 = −i∂t 〈n̂B〉 = ∫

k Jk( f BAk − f AB
k ),

but we shall not consider this small small correction in the
following.

Since we have four functions f AA
k , f AB

k , f BAk , and f BBk ,
we denote the two sublattices by capital superscripts such as
X ∈ {A,B}. Then Eq. (8) becomes

i∂t f XY
k = Jk

(
f X̄Y
k − f XȲ

k

) − (V X̄ − V Ȳ ) f XY
k + SXY

k , (19)
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where X̄ denotes the sublattice opposite to X , i.e., if X =
A then X̄ = B and vice versa. Furthermore, V A denotes
the interaction energy associated to sublattice A, i.e., V A =∑

α Vαβ〈n̂α〉/Z for any α ∈ A. For all interactions equal, this
simplifies to V A = V 〈n̂α〉 Again, the source terms SXY

k also
contain three-point correlations.

Before continuing, let us diagonalize the above linear set of
equations (with source terms SXY

k ) because the f XY
k are rapidly

oscillating instead of slowly varying. This can be achieved via
a rotation in the X -Y subspace with an orthogonal 2 × 2 trans-
formation matrix Oa

X (k) via f ab
k = ∑

XY Oa
X (k) f XY

k Ob
Y (k), see

Appendix C 2. In terms of the rotated functions f ab
k , the

evolution equation (19) simplifies to

i∂t f ab
k = (

Eb
k − Ea

k

)
f ab
k + Sab

k , (20)

with the quasiparticle (a = +) and hole (a = −) energies

E±
k = 1

2

(
V ±

√
(V A − V B )2 + 4J2

k

)
, (21)

where we have used V A + V B = V due to 〈n̂A〉 + 〈n̂B〉 = 1.
This formula with its two solutions is reminiscent of the two
solutions of the Fermi-Hubbard model in the Mott insulator
phase [55] where a lower and an upper Hubbard band are
formed. In the following, we speak of a quasiparticle band
and a quasihole band referring to the + and − sign in
(21). Apart from the gap V A − V B which is basically the
repulsion energy, the quadratic dependence on the hopping J2

k
indicates that (quasi) particles and quasiholes can only move
via second-order tunneling processes such as co-tunneling,
cf. Fig. 1.

We see that the functions f ab
k in (20) are rapidly oscillating

for a �= b but slowly varying for a = b. Hence the latter two
are the quasiparticle (a = b = +) and quasihole (a = b = −)
distribution functions, which we denote by f +

k and f −
k , respec-

tively. Their dynamics can be derived in complete analogy
to the previous case, cf. Eqs. (13)–(17), the only differences
are the additional particle/hole indices on the correlation
functions f ab

k , gabc
qk , and habcd

kpq , as well as the source terms
Sab

k , Sabc
qk , and Sabcd

kpq . Apart from these additional indices, the
derivation of the Boltzmann equation is completely analogous
to the previous case, where we finally arrive at [see Eq. (C31)]

∂t f d
k = −2π

∫
p

∫
q

∑
a,b,c

Mabcd
p+q,p,k−q,k

× δ
(
Ea

p+q−Eb
p + Ec

k−q−Ed
k

)
× [

f d
k f b

p

(
1− f c

k−q

)(
1− f a

p+q

) − (
f d
k f b

p ↔ f c
k−q f a

p+q

)]
.

(22)

The matrix elements Mabcd
p+q,p,k−q,k contain different processes,

such as collision of two quasiparticles M++++
p+q,p,k−q,k or two

quasiholes M−−−−
p+q,p,k−q,k, but also pair-creation processes, e.g.,

with one incoming quasiparticle and two outgoing particles
plus one quasihole, as long as they are allowed by energy
conservation—which is enforced by the second line of (22).

C. Other geometries

The mean-field background sketched in Fig. 1 is based
on a square or hypercubic lattice at half filling. It might be
illuminating to discuss other geometries. Since a graphene-
type honeycomb lattice is also bipartite, one would get an
analogous Mott-type insulator state at half filling (although no
longer with a checkerboard structure, of course) by placing the
fermions in one sublattice and keeping the other one empty.
In this case, the dispersion relations Jk would change, but
apart from that the energies E±

k , are still given by the same
functional form (21).

A triangular lattice, on the other hand, is not bipartite,
and thus does not feature such a Mott-type insulator state
at half filling. However, at a filling factor of one third, one
can obtain an analogous state by occupying one sublattice
(also triangular) while keeping the other two sublattices empty
(because the triangular lattice is tripartite). In this case, each
occupied lattice site would be surrounded by empty sites.

Another interesting point is a departure from half-filling.
As long as this deviation is small enough such that it does
not destroy the global checkerboard structure, one could take
it into account by an imbalance of the initial conditions for
the distribution functions f +

k and f −
k . Increasing the f +

k or
decreasing f −

k (i.e., increasing the quasihole occupation 1 −
f −
k ) corresponds to a filling factor a bit above or below one

half, respectively.
Even more possibilities may arise if we do not restrict our-

selves to a simple nearest-neighbor interaction. Depending on
the interaction matrix Vμν , one obtains a plethora of geometric
phases. In this context, it is also interesting to note an analogy
to ultra-cold atoms in optical lattices (see, e.g., Refs. [28,29]).
In this setup, it is possible to realize a scenario where the
nearest-neighbor interaction of the spinless fermions consid-
ered here is replaced by an effective interaction via additional
bosonic atoms. This effectively nonlocal interaction may sup-
port new phases such as a supersolid phase, which displays
some similarities to the checkerboard structure considered
here (although it is not a precise one-to-one correspondence).

V. STRONG-INTERACTION LIMIT

Let us now consider the strongly interacting limit Vk � Jk
in order to simplify the complicated expressions of the various
matrix elements Mabcd

p+q,p,k−q,k. In this regime, the effective
band width of the two bands described by Eq. (21) is small
compared to the gap between the two because the former
scales with J2/V as compared to the latter scaling with V .
Collisions between quasiparticles, quasiholes, or quasiparticle
and -hole can, therefore, not provide the energy needed to
overcome the gap and create additional particle-hole pairs.
The dominant process in this limit is the particle-hole scat-
tering which is determined by the matrix elements

M0011
p+q,p,k−q,k = M1100

p+q,p,k−q,k

≈Vq

[
Vq + Vk−q−p

V 2(nA − nB )2
(JpJk + Jp+qJk−q)

]
.

(23)
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The seconds term in (23) is suppressed by a factor of J2/V 2

since this particle-hole exchange term requires two hopping
events. The particle-particle and hole-hole scattering demands
at least four hopping events and is given by

M0000
p+q,p,k−q,k = M1111

p+q,p,k−q,k ≈ Vq(Jp+qJp + Jk−qJk )

V 4(nA − nB )4

× [Vq(Jp+qJp + Jk−qJk )

−Vk−p−q(Jp+qJk + Jk−qJp)] . (24)

In addition, there is particle-hole scattering which involves to
leading order the exchange-term ∼VqVk−p−q,

M0110
p+q,p,k−q,k = M1001

p+q,p,k−q,k ≈ Vq(Jp+qJk−q + JpJk )

V 2(nA − nB )2

×
[

Vq(Jp+qJk−q + JpJk )

V 2(nA − nB )2
+ Vk−p−q

]
. (25)

Note that here the contribution ∼V 2
q is of higher order in

contrast to the particle-hole scattering channel given by (23).
Keeping the lowest terms only implies a considerable

simplification of the quantum Boltzmann equation (22), which
now reads

∂t f +
k = −2π

∫
p

∫
q

V 2
q δ(E−

p+q − E−
p + E+

k−q − E+
k )

× [ f +
k f −

p (1 − f +
k−q)(1 − f −

p+q)

− ( f +
k f −

p ↔ f +
k−q f −

p+q)].

(26)

In this limit of strong interactions, the scattering cross section
only depends on the momentum transfer q.

Quasiparticles and quasiholes have to be considered two
distinct classes rather than a pair of particle and antiparticle
as in the weakly interacting case. This becomes clear from the
absence of the second term VqVk−p−q of Eq. (6) from Eq. (26).
This term is usually interpreted as interference term between
processes with exchanged collision partners. In the present
case, where quasiparticle and quasihole are independent, it
does appear but is strongly suppressed by the denominator
V 2(nA − nB )2 in the first factor on the right hand side of
Eq. (25).

Quite intuitively, the suppression of particle-particle (or
hole-hole) collisions can be understood by the observation
that two particles cannot come close enough to interact di-
rectly (same for two holes): they can only interact via higher-
order virtual hopping processes, see Fig. 1. In contrast, a
quasiparticle and a quasihole can occupy neighboring lattice
sites and thus they can interact directly via Vμν .

As expected, the Boltzmann equations (22) and (26) re-
spect the standard conservations laws (e.g., energy, momen-
tum and probability) and satisfy the usual consistency condi-
tions (e.g., the crossing relation). Note that the quasiparticle
f +
k and quasihole f −

k excitations obey fermionic statistics,
consistent with the structure in Eqs. (22) and (26), i.e., the
presence of terms of the type (1 − f +

k−q), etc. As another
analogy to the weakly interacting limit (6), the quasihole
distribution function f −

k approaches unity in the strongly
interacting ground state, i.e., the hole excitations are properly
described by 1 − f −

k , as in (6).

It is also possible to construct a quantity

H = −
∑

a

∫
k

(
f a
k ln f a

k + (
1 − f a

k

)
ln

(
1 − f a

k

))
(27)

that is nondecreasing under collisions and thus to derive an H
theorem [24,56]. As a consequence, the populations of both
particles and holes will finally reach stationary distributions,
i.e., the system reaches thermalization.

VI. TIMESCALE ANALYSIS

Since quasiparticles and quasiholes are considered to be
independent, the relaxation described by the quantum Boltz-
mann equation take place on different timescales depending
on the preparation of initial conditions. To explore this possi-
bility, we perform numerical studies on the basis of a specific
model: the spinless fermions move on a two-dimensional
square lattice, Coulomb interactions V are limited to nearest-
neighbor sites, and V � J . For our calculations, we use a
ratio of J/V = 10−3 and set V to one. The initial condition is
taken as a small perturbation δ f of the charge-density wave
that could be realized, e.g., by photodoping [23]. For this
particular choice, the energies entering into the model are
given by

E±
k = V

2

(
1 ±

√
1 + J 2

V 2
(cos(kx ) + cos(ky))2

)
. (28)

Since differences of these energies scale with J2/V (i.e., the
effective bandwidth) while the scattering cross section in the
Boltzmann equation (26) scales with V 2, the typical order of
magnitude of the relaxation rate scales with V 3/J2. A look
at the second line of Eq. (26), however, shows that the rates
are also affected by the distribution functions. To probe this
dependence, we vary the initial values for the f ±

k over a few
orders of magnitude and see from our calculations that the
relaxation rates scale linearly with the initial perturbation δ f .
This behavior can be understood if we look again at Eq. (26):
for a given small perturbation δ f � 1 from the charge-density
wave ground state of the system, we have f +

k = δ f and f −
k =

1 − δ f ≈ 1 for the perturbed states. Inserting into the rate
equation (26), we find that the four distribution functions in
the rate can be approximated by a total factor of δ f f +

k , which
proves the linearity in δ f .

Figure 2 shows a graphical representation of the band
structure. The upper (quasiparticle) and the lower (quasihole)
band are mirror-symmetric with respect to the center plane of
the gap. The quasiparticle band has a maximum at the center
of the Brillouin zone and minima at the zone boundaries
whereas the lower band is maximal at these k-points and
minimal at the zone center. For simplicity sake, we will refer
to the set of k-points whose eigen-energies are closest to the
gap as the diamond.

Note that the Coulomb matrix element Vq has a strong q de-
pendence that is equivalent to the k-dependent term under the
square root of Ek in the case of nearest-neighbor interactions.
Due to this structure of Vq, we have high scattering rates for
transitions along the diamond (with both initial and final states
inside the diamond) as well as for transitions between the
centers of adjacent Brillouin zones. Contrarily, the scattering
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FIG. 2. Band structure for a two-dimensional square lattice for
J/V = 10−3. We can see the Brillouin zone and parts of the adjacent
ones. The gap is shrunk by six orders of magnitude to show the k
dependence of both bands in one plot.

rates between the zone center and the diamond are much
reduced and even tend to zero towards the diamond corners.

As a first test case, we use initial conditions that are mirror-
symmetric with respect to the gap and represent a low-energy
input: quasiparticles and quasiholes initially occupy the same
few k states close to but slightly away from the gap with a low
probability of δ f = 10−7 per state. Given these initial condi-
tions, we then integrate the quantum Boltzmann equation on a
numerical grid of 50 × 50 k points in the Brillouin zone using
an adaptive time step method.

A selected part from the resulting time-series is depicted in
Fig. 3 and shows how the distributions evolve. We observe that
the scattering among the quasiparticles and quasiholes leads to
a spread of their initial distribution over the whole diamond.
At the end, the states with the lowest (highest for holes)
energies have the highest occupation probabilities and we see
as expected for a thermalized distribution that the probabilities
decrease towards higher (lower) energies (cf. Fig. 4).

To explore the consequences of unequal initial populations
in the respective bands, we choose initial conditions where
quasiparticles are again located close to the gap while now the
holes are located close to the Brillouin zone center. Analyzing
the time series in Fig. 5, we notice that the relaxation of the
initial population proceeds on different timescales.

In the early stages at t = 10−1J2/V 3, scattering among the
holes at the center with the particles in the diamond results
in a localized broadening around the center and the flanks of
the diamond. At the time t = J2/V 3, the unoccupied corner
states of the diamond in the quasiparticle band start to fill.
Simultaneously, the occupation probabilities of the quasihole
states close to the gap start to increase such that the diamond
becomes visible whereas for the quasiparticles in turn the
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FIG. 3. Time series (in units of J2/V 3) of the evolution of a low-
energy excitation with symmetric initial conditions. For both bands
at t = 0, a set of states that is close to but not at the gap is perturbed.

center becomes populated. At later times, the distributions
of quasiparticles and quasiholes within the Brillouin zone
come to resemble each other more and more closely until they
eventually become equal at around t = 102J2/V 3: Now both
have their population maximum at the zone center, but the
diamond is also still populated.

For the interpretation of these results, we have to keep in
mind that in the limit V � J , quasiparticles and quasiholes
scatter with each other, but not among themselves. A quasi-
particle and a quasihole are able to exchange both energy and
momentum in the scattering. However, the momentum trans-
fer is governed by the Coulomb matrix element Vq, assigning
different probability to different momentum transfers.
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FIG. 4. Probability distribution at t = 102J2/V 3 for the case of
the symmetric initial conditions. Note that the occupation probabili-
ties for the quasiholes are plotted as 1 − f −.

For this reason, we observe in the early stage transitions
for which the energy is almost conserved separately for
quasielectrons and quasiholes (scattering events from the zone
center to an adjacent one or within the diamond by one lattice
vector) since the momentum dependence of Vq favors these
transitions. At the same time, scattering from the center to
the diamond flank with a momentum transfer of half a lattice
vector contributes as the energy exchange is a good match and
the Coulomb matrix element is still sizable.

In the later stages, scattering with arbitrary energy and mo-
mentum transfer start to play its role. Due to these processes,
quasiparticle and -hole occupation probabilities become more
and more similar. The equilibrium configuration for the quasi-
particles (quasiholes) shows a higher (lower) population in
the high-energy region compared to the diamond region (cf.
last panel of Fig. 5). It corresponds to an inverted Fermi-Dirac
distribution characteristic of a system at negative temperature
as can be seen in the log plot of the distributions in Fig. 6. The
same applies analogously for the quasihole distribution. Note
that such a negative temperature is facilitated by the upper
limit for the energy (bounded spectrum) and the large initial
value for the total energy of the system.

VII. OUTLOOK: BACK-REACTION

In the strongly interacting limit V � J considered here,
the role of the microscopic parameters J and V reduces to a
simple overall scaling V 3/J2 of the relaxation rate (see above),
the rest is determined by purely geometrical dimensionless
quantities. Going away from this limit, however, the situation
becomes more complex.

One the one hand, the eigenenergies E±
k and the matrix ele-

ments Mabcd
p+q,p,k−q,k entering the Boltzmann equation (22) de-

pend nontrivially on the dimensionless ratio J/V . On the other
hand, by including back-reaction via i∂t 〈n̂A〉 = −i∂t 〈n̂B〉 =∫

k Jk( f BAk − f AB
k ), the time-dependence of the distribution

functions f ±
k stemming from the Boltzmann equation (22)

does also entail a time-dependence of the sublattice fillings
〈n̂A〉 and 〈n̂B〉, which in turn modify the eigenenergies E±

k
and the matrix elements Mabcd

p+q,p,k−q,k entering the Boltzmann
equation (22) in a time-dependent manner.
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FIG. 5. Times series (in units of J2/V 3) of the evolution of a
high energy excitation. The upper (quasiparticle) band is initially
perturbed in the diamond shaped minimum, the lower (quasihole)
band in the zone center.
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FIG. 6. Probability distribution at t = 102J2/V 3 for the case of
the asymmetric initial conditions. Note that the occupation probabil-
ities for the quasiholes are plotted as 1 − f −.

In principle, these intricate interdependencies can be taken
in account self-consistently. Fortunately, in the limit of small
J/V � 1 and small populations f +

k � 1 and f −
k ≈ 1 con-

sidered here, all these modifications are tiny and can be
neglected.

VIII. CONCLUSIONS

For strongly interacting spinless fermions on a general
regular bipartite lattice in higher dimensions, we employ the
hierarchy of correlations in order to derive the quasiparticle
and quasihole excitations, their spectrum as well as their
mutual interactions, which allows us to obtain a quantum
Boltzmann equation [54]. In the strong-coupling limit, the
ground state (at half filling) is given by the charge-density
wave state, quite analogous to the Mott insulator phase in the
Fermi-Hubbard model. In this limit, we find that collisions
between quasiparticles and quasiholes dominate over particle-
particle and hole-hole scattering events.

As a result, the relaxation and thermalization dynamics
strongly depends both on the absolute magnitude and on
the initial distribution of the excitations (quasiparticles or
quasiholes) in the Brillouin zone. For small initial quasi-
particle populations, their lifetime is inversely proportional
to the initial occupation probability, i.e., the strength of the
excitation. Due to the varying efficiency of momentum trans-
fer, relaxation proceeds in two stages if the distributions of
quasiparticles and holes in the Brillouin zone are initially
very different. Only in the second stage, the distributions of
quasiparticles and holes begin to resemble each other. The H
theorem for the quantum Boltzmann equation ensures that a
unique equilibrium state is finally reached.

In summary, we demonstrated that thermalization even in
a strongly correlated system can still be described in high-
dimensional systems within the well-known framework of
a quantum Boltzmann equation, but the solutions of this
equation fall into different classes depending on the initial
conditions chosen. As possible directions for future work,
one could study initial conditions departing from half-filling
(corresponding to doped Mott insulators) or with parameters
close to the metal-insulator transition.
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APPENDIX A: CORRELATORS AND DEFINITIONS

Before we present the details of our calculation, we give
here the explicit form of the correlation functions and their
Fourier representations. For spinless fermions, the Heisenberg
equations for the annihilation and creation operators are

i∂t ĉα = − 1

Z

∑
μ

Jμα ĉμ + 1

2Z

∑
μ

Vμα (ĉα n̂μ + n̂μĉα ), (A1)

i∂t ĉ
†
α = 1

Z

∑
μ

Jμα ĉ†
μ − 1

2Z

∑
μ

Vμα (ĉ†
α n̂μ + n̂μĉ†

α ) . (A2)

Using (A1), we can deduce the equation of motion for arbi-
trary n-point expectation values. Since the hierarchy is based
on the correlations among lattice sites, we need in addition the
relation between n-point correlators and n-point expectation
values. Up to first order in 1/Z , we have for μ �= ν the two-
point correlations

〈ĉ†
μĉν〉corr =

∫
k

f corr
k eik·(xμ−xν ) (A3)

and the particle-number correlations 〈n̂μn̂ν〉corr = 〈n̂μn̂ν〉 −
〈n̂μ〉〈n̂ν〉 which will be omitted in the following since they
do not contribute to the Boltzmann collision terms in leading
order. The relevant three-point correlators in second order of
the hierarchical expansion are given for α �= μ �= ν by

〈n̂α ĉ†
μĉν〉corr = 〈n̂α ĉ†

μĉν〉 − 〈n̂α〉〈ĉ†
μĉν〉corr (A4)

and have the Fourier decomposition

〈n̂α ĉ†
μĉν〉corr =

∫
p1,p2

gp1,p2 eip1·(xμ−xα )+ip2·(xν−xα ) . (A5)

Furthermore, the 4-point correlators for α �= β �= μ �= ν are
defined as

〈ĉ†
α ĉβ ĉ†

μĉν〉corr = 〈ĉ†
α ĉβ ĉ†

μĉν〉 − 〈ĉ†
α ĉβ〉corr〈ĉ†

μĉν〉corr

+ 〈ĉ†
α ĉν〉corr〈ĉ†

μĉβ〉corr (A6)

and we define their Fourier components via

〈ĉ†
α ĉβ ĉ†

μĉν〉corr =
∫

p1,p2,p3

hp1,p2,p3

× eip1·(xα−xν )+ip2·(xβ−xν )+ip3·(xμ−xν ) . (A7)

APPENDIX B: HOMOGENEOUS LATTICE

It is instructive to derive with the hierarchical method the
well-known Boltzmann equations for a homogeneous lattice
at half filling, see Eq. (6). The homogeneity of the fermion
distribution enforces time-independence of the on-site occu-
pation number which translates to the zeroth-order equation
∂t 〈n̂μ〉 = 0. The two-point correlators remain constant in or-
der 1/Z but their equations of motion have an inhomogene-
ity of order 1/Z2 which is determined by the three-point
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correlators,

i∂t 〈ĉ†
μĉν〉corr = S(2)

μν = − 1

Z

∑
α

(Vαμ − Vαν )〈n̂α ĉ†
μĉν〉corr ,

(B1)

or, translated to Fourier space,

i∂t f corr
k = S(2)

k = −
∫

q
Vk+q(gq,k − gk,q) . (B2)

From the hierarchy of correlations follows the evolution equa-
tion for the three-point correlators which contains the two-
point correlator 〈ĉ†

μĉν〉corr and the particle number correlator
〈n̂μn̂ν〉corr. As mentioned in the previous section, the latter do
not contribute to Boltzmann collisions terms in order 1/Z3.
We find

i∂t 〈n̂α ĉ†
μĉν〉corr

= 1

Z

∑
γ

Jγμ〈n̂α ĉ†
γ ĉν〉corr

− 1

Z

∑
γ

Jγ ν〈n̂α ĉ†
μĉγ 〉corr + S(3)

αμν,1/Z2 + S(3)
αμν,1/Z3 (B3)

with the source terms

S(3)
αμν,1/Z2 = 1

Z

∑
γ

Jγα[〈ĉ†
α ĉν〉corr〈ĉ†

μĉγ 〉corr

− 〈ĉ†
γ ĉν〉corr〈ĉ†

μĉα〉corr]

− 1

4

(
Vμα

Z
− Vνα

Z

)
〈ĉ†

μĉν〉corr + . . . (B4)

and

S(3)
αμν,1/Z3 = 1

Z

∑
γ

Jγα[〈ĉ†
γ ĉα ĉ†

μĉν〉corr − 〈ĉ†
α ĉγ ĉ†

μĉν〉corr] + . . .

(B5)

In (B4), we suppressed the particle-number correlations and
in (B5) we suppressed all terms except the four-point cor-
relators. As will be shown below, the latter are relevant for
the Boltzmann dynamics in leading order. After the Fourier
transformation of (B3)–(B5), we obtain

i∂t gq,k = (Jq − Jk )gq,k + S(3)
q,k,1/Z2 + S(3)

q,k,1/Z3 (B6)

with

S(3)
q,k,1/Z2 =(Jq − Jk ) f corr

q f corr
k − 1

4Vq+k
(

f corr
k − f corr

q

)
(B7)

and

S(3)
q,k,1/Z3 =

∫
p
(Jp − Jk+q+p)hp,−k−q−p,q . (B8)

We integrate the evolution equation (B6) within the Markov
approximation and obtain

gq,k =
i
(
S(3)

q,k,1/Z2 + S(3)
q,k,1/Z3

)
i(Jk − Jq) − ε

. (B9)

Finally, we have to consider the dynamics of the four-point
correlators which is given in real space by

i∂t 〈ĉ†
α ĉβ ĉ†

μĉν〉corr

= 1

Z

∑
γ

Jγα〈ĉ†
γ ĉβ ĉ†

μĉν〉corr − 1

Z

∑
γ

Jγ β〈ĉ†
α ĉγ ĉ†

μĉν〉corr

+ 1

Z

∑
γ

Jγμ〈ĉ†
α ĉβ ĉ†

γ ĉν〉corr

− 1

Z

∑
γ

Jγ ν〈ĉ†
α ĉβ ĉ†

μĉγ 〉corr + S(4)
αβμν,1/Z3 + O(1/Z4) (B10)

with the source term

S(4)
αβμν,1/Z3 =Jαβ

Z
[〈n̂β ĉ†

μĉν〉corr − 〈n̂α ĉ†
μĉν〉corr + 〈ĉ†

μĉβ〉corr〈ĉ†
β ĉν〉corr − 〈ĉ†

μĉα〉corr〈ĉ†
α ĉν〉corr]

+ Jαν

Z
[〈n̂α ĉ†

μĉβ〉corr − 〈n̂ν ĉ†
μĉβ〉corr + 〈ĉ†

μĉα〉corr〈ĉ†
α ĉβ〉corr − 〈ĉ†

μĉν〉corr〈ĉ†
ν ĉβ〉corr]

+ Jβμ

Z
[〈nμĉ†

α ĉν〉corr − 〈n̂β ĉ†
α ĉν〉corr + 〈ĉ†

α ĉμ〉corr〈ĉ†
μĉν〉corr − 〈ĉ†

α ĉβ〉corr〈ĉ†
β ĉν〉corr]

+ Jμν

Z
[〈n̂ν ĉ†

α ĉβ〉corr − 〈n̂μĉ†
α ĉβ〉corr + 〈ĉ†

α ĉν〉corr〈ĉ†
ν ĉβ〉corr − 〈ĉ†

α ĉμ〉corr〈ĉ†
μĉβ〉corr]

− 1

Z

∑
γ

(Vαγ − Vβγ )〈n̂γ ĉ†
μĉν〉corr〈ĉ†

α ĉβ〉corr − 1

Z

∑
γ

(Vνγ − Vαγ )〈n̂γ ĉ†
μĉβ〉corr〈ĉ†

α ĉν〉corr

− 1

Z

∑
γ

(Vβγ − Vμγ )〈n̂γ ĉ†
α ĉν〉corr〈ĉ†

μĉβ〉corr − 1

Z

∑
γ

(Vμγ − Vνγ )〈n̂γ ĉ†
α ĉβ〉corr〈ĉ†

μĉν〉corr . (B11)

The dynamics of the Fourier components is then governed through

i∂t hp1,p2,p3 = (Jp1 − Jp2 + Jp3 − Jp1+p2+p3 )hp1,p2,p3 + S(4)
p1,p2,p3,1/Z3 (B12)
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with

S(4)
p1,p2,p3,1/Z3 = (Jp1 − Jp2 ) f corr

p3
f corr
p1+p2+p3

+ [
Jp1+p2+p3 − Jp1 − Vp2+p3

(
f corr
p1

− f corr
p1+p2+p3

)]
gp3,p2

− (p1 ↔ p3) + (p1 ↔ p3, p2 ↔ −p1 − p2 − p3) − (p2 ↔ −p1 − p2 − p3) . (B13)

After solving (B12) within Markov approximation and plugging the result back into (B9), the evolution equation (B2) takes the
form

i∂t f corr
k = −

∫
q

iVk+q

i(Jk − Jq) − ε

[
S(3)

q,k,1/Z2 +
∫

p

(Jp − Jk+q+p)iS(4)
p,−k−q−p,q,1/Z3

i(Jk − Jq + Jk+q+p − Jp) − ε

]
− c.c. (B14)

After some algebra and using the identity πδ(x) = limε→0 ε/(ε2 + x2), we find in the continuum limit from (B14) the Boltzmann
dynamics

∂t fk = − 2π

∫
q,p

δ(Jk + Jp − Jk−q − Jp+q)Vq(Vq − Vk−p−q)[ fk fp(1 − fk−q)(1 − fp+q) − fk−q fp+q(1 − fk )(1 − fp)] , (B15)

where we introduced the electron distribution functions fk which are the Fourier components of 〈ĉ†
μĉν〉 = 〈ĉ†

μĉν〉corr + δμν〈n̂μ〉,
i.e., fk = 1/2 + f corr

k . Finally, we want to remark that in the evaluation of (B14) all terms which do not contribute to the collision
terms cancel each other. In order to see this, it is necessary to include beside the particle-number correlators also the four-point
correlators 〈n̂α n̂β ĉ†

μĉν〉corr (which were not considered in the calculation above) and several local terms which ensure that the
correlators vanish identically if two or more lattice sites are equal.

APPENDIX C: CHARGE-DENSITY WAVE

1. Single-site evolution

We consider a bipartite lattice at half filling such that the fermion densities add up to unity, nA + nB = 1. For labeling the
sublattice we use the capital superscripts such as X ∈ {A,B}. The time evolution of the on-site occupation number is given by

i∂t 〈n̂μ〉 = 1

Z

∑
α

Jαμ[〈ĉ†
α ĉμ〉corr − 〈ĉ†

μĉα〉corr] (C1)

which translates after a Fourier transformation to

i∂t n
X =

∫
q

Jq
[

f corr,X̄ X
q − f corr,XX̄

q

]
. (C2)

The superscript X̄ denotes the sublattice opposite to X .

2. Quasiparticle and hole distribution functions.

For the two-point correlations, we generalize the evolution equation (B1) for the charge density background and find

i∂t 〈ĉ†
μĉν〉corr = 1

Z

∑
α

Jαμ〈ĉ†
α ĉν〉corr − 1

Z

∑
α

Jαν〈ĉ†
μĉα〉corr − 1

Z

∑
α

(Vαμ − Vαν )〈n̂α〉〈ĉ†
μĉν〉corr + Sμν,1/Z + Sμν,1/Z2 (C3)

where we separated the source terms according to their order 1/Z ,

Sμν,1/Z =Jμν

Z
(〈n̂ν〉 − 〈n̂μ〉) − δμν

1

Z

∑
α

Jαμ[〈ĉ†
α ĉμ〉corr − 〈ĉ†

μĉα〉corr] , (C4)

Sμν,1/Z2 = − 1

Z

∑
α

(Vαμ − Vαν )〈n̂α ĉ†
μĉν〉corr − 1

Z
Vμν (〈n̂μ〉 − 〈n̂ν〉)〈ĉ†

μĉν〉corr . (C5)

The second term in (C4) was added such that the evolution equation (C3) is also valid for μ = ν and the Fourier summation can
be performed over all lattice sites. From (C3) we find for the evolution of the Fourier components

i∂t
(

f corr,XY
k + δXY nX

) = Jk
(

f corr,X̄Y
k − f corr,XȲ

k

) − (V X̄ − V Ȳ ) f corr,XY
k + SXY

k,1/Z + SXY
k,1/Z2 , (C6)

where Eq. (C2) was used. We can rewrite (C6) using the variables f XY
k = f corr,XY

k + δXY nX which are the Fourier components
of the two-site expectation value 〈ĉ†

μĉν〉,

i∂t f XY
k =Jk

(
f X̄Y
k − f XȲ

k

) − (V X̄ − V Ȳ ) f XY
k + SXY

k,1/Z + SXY
k,1/Z2 . (C7)
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The relation (C7) can be diagonalized via a rotation in the X -Y subspace by means of f ab
k = ∑

XY Oa
X (k)Ob

Y (k) f XY
k with the

momentum-dependent rotation matrix

Oa
X (k) =

(
cos αk sin αk

− sin αk cos αk

)
. (C8)

The entries of this matrix are given by

cos αk = Jk

|Jk|

√
ωk + (V A − V B )√

2ωk
(C9)

and

sin αk =
√

ωk − (V A − V B )√
2ωk

(C10)

with the eigenfrequency ωk =
√

(V A − V B )2 + 4J2
k . For a slowly varying charge-density background we can assume

[∂t , Oa
X (k)] ≈ 0 such that the diagonalization of (C7) leads to

i∂t f ab
k = ( − Ea

k + Eb
k

)
f ab
k + Sab

k,1/Z + Sab
k,1/Z2 (C11)

with the quasiparticle (a = +) and hole (a = −) energies E±
k = [V ± ωk]/2. For a = b, the variables are the distribution

functions for quasiparticles and holes, namely,

f aa
k = f corr,aa

k +
∑

X

Oa
X (k)Oa

X (k)nX ≡ f a
k . (C12)

For the slowly varying distribution functions f a
k , the 1/Z source term in (C11) is vanishing. Thus their time evolution is governed

by terms which are at least of order 1/Z2:

i∂t f a
k = Saa

k,1/Z2 . (C13)

There are two important identities which are useful for the transformation from the sublattice space to the particle-hole space.
The first one is the inversion of Eq. (C12)

f corr,XY
k =

∑
a

Oa
X (k)Oa

X (k) f a
k − δXY nX + O(1/Z2) . (C14)

which can be derived from the fact that the off-diagonal correlations approach their prethermalized value to lowest order, i.e.,

f corr,aā
k = −

∑
X

OX
a (k)OX

ā (k)nX + O(1/Z2) . (C15)

The second identity is the eigenvalue equation for rotation matrix

JkOX
a (k) = ( − Ea

k − V X̄
)
OX̄

a (k) . (C16)

3. Three-point correlators

The Boltzmann collisions are contained in the 1/Z2 term in Eq. (C7) which have the form

SXY
k,1/Z2 = −

∫
q

Vk+q
(
gX̄ XY

q,k − gȲ XY
k,q

)
. (C17)

Transforming this source term to particle-hole space, we find from (C13) the generalization of (B2) to be

i∂t f a
k = −

∫
q

∑
b,X

Vk+q
(
Oa

X (k)Ob
X (q)gX̄ ,ba

q,k − c.c.
)
. (C18)

Here we rotated the three-point correlations according to gZ,ab
q,k = ∑

X,Y Oa
X (q)Ob

Y (k)gZXY
q,k . Their dynamics is determined by the

real-space equation

i∂t 〈n̂α ĉ†
μĉν〉corr = 1

Z

∑
γ

Jγμ〈n̂α ĉ†
γ ĉν〉corr − 1

Z

∑
γ

Jγ ν〈n̂α ĉ†
μĉγ 〉corr − 1

Z

∑
γ

(Vγμ − Vγ ν )〈n̂γ 〉〈n̂α ĉ†
μĉν〉corr + Sαμν,1/Z2 + Sαμν,1/Z3

(C19)

which is a generalization of (B3). Again, the particle-number correlators can be omitted in the source terms since they contribute
with terms that are O(1/Z4) to the Boltzmann dynamics whereas we shall see that the leading order collision terms are O(1/Z3).
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Therefore we remain with

Sαμν,1/Z2 = 1

Z

∑
γ

Jγα[〈ĉ†
α ĉν〉corr〈ĉ†

μĉγ 〉corr − 〈ĉ†
γ ĉν〉corr〈ĉ†

μĉα〉corr] −
(

Vμα

Z
− Vνα

Z

)
〈n̂α〉(1 − 〈n̂α〉)〈ĉ†

μĉν〉corr

+ Jαμ

Z
[(〈n̂μ〉 − 〈n̂α〉)〈ĉ†

α ĉν〉corr] − Jαν

Z
[(〈n̂ν〉 − 〈n̂α〉)〈ĉ†

μĉα〉corr] + . . . (C20)

Within the source term Sαμν,1/Z3 , only the four-point correlators are of interest,

Sαμν,1/Z3 = 1

Z

∑
γ

Jγα[〈ĉ†
γ ĉα ĉ†

μĉν〉corr − 〈ĉ†
α ĉγ ĉ†

μĉν〉corr] + . . . (C21)

After Fourier transformation and rotation in sublattice space, we find from (C19)–(C21) the generalization of the evolution
equation (B6), i.e.,

i∂t g
Xab
q,k = ( − Ea

q + Eb
k

)
gXab

q,k + SXab
q,k,1/Z2 + SXab

q,k,1/Z3 (C22)

with

SXab
q,k,1/Z2 = (

Ea
q − Eb

k

)
Oa

X (q)Ob
X (k)

[ − (nX )2 + nX
(

f a
q + f b

k

) − f a
q f b

k

] − Vq+kOa
X̄ (q)Ob

X̄ (k)(nX − 1)nX
(

f a
q − f b

k

)
(C23)

and

SXab
q,k,1/Z3 =

∫
p

∑
c,d

(
Ed

k+q+p − Ec
p

)
Oc

X (p)Od
X (k + q + p)hcdab

p,−k−q−p,q (C24)

where we rotated the four-point correlators according to

habcd
p1,p2,p3

=
∑

XYVW

Oa
X (p1)Ob

Y (p2)Oc
V (p3)Od

W (p1 + p2 + p3)hXYVW
p1,p2,p3

. (C25)

4. Four-point correlators

The dynamics of the Fourier components hXYVW
p1,p2,p3

can be deduced from a generalization of (B10), i.e.,

i∂t 〈ĉ†
α ĉβ ĉ†

μĉν〉corr = 1

Z

∑
γ

Jγα〈ĉ†
γ ĉβ ĉ†

μĉν〉corr − 1

Z

∑
γ

Jγ β〈ĉ†
α ĉγ ĉ†

μĉν〉corr

+ 1

Z

∑
γ

Jγμ〈ĉ†
α ĉβ ĉ†

γ ĉν〉corr − 1

Z

∑
γ

Jγ ν〈ĉ†
α ĉβ ĉ†

μĉγ 〉corr

− 1

Z

∑
γ

(Vαγ − Vβγ + Vμγ − Vνγ )〈n̂γ 〉〈ĉ†
α ĉβ ĉ†

μĉν〉corr + Sαβμν,1/Z3 + O(1/Z4) . (C26)

The inhomogeneity

Sαβμν,1/Z3 = Jαβ

Z
[〈n̂β ĉ†

μĉν〉corr − 〈n̂α ĉ†
μĉν〉corr + 〈ĉ†

μĉβ〉corr〈ĉ†
β ĉν〉corr − 〈ĉ†

μĉα〉corr〈ĉ†
α ĉν〉corr]

+ Jαν

Z
[〈n̂α ĉ†

μĉβ〉corr − 〈n̂ν ĉ†
μĉβ〉corr + 〈ĉ†

μĉα〉corr〈ĉ†
α ĉβ〉corr − 〈ĉ†

μĉν〉corr〈ĉ†
ν ĉβ〉corr]

+ Jβμ

Z
[〈nμĉ†

α ĉν〉corr − 〈n̂β ĉ†
α ĉν〉corr + 〈ĉ†

α ĉμ〉corr〈ĉ†
μĉν〉corr − 〈ĉ†

α ĉβ〉corr〈ĉ†
β ĉν〉corr]

+ Jμν

Z
[〈n̂ν ĉ†

α ĉβ〉corr − 〈n̂μĉ†
α ĉβ〉corr + 〈ĉ†

α ĉν〉corr〈ĉ†
ν ĉβ〉corr − 〈ĉ†

α ĉμ〉corr〈ĉ†
μĉβ〉corr]

− 1

Z

∑
γ

(Vαγ − Vβγ )〈n̂γ ĉ†
μĉν〉corr〈ĉ†

α ĉβ〉corr − 1

Z

∑
γ

(Vνγ − Vαγ )〈n̂γ ĉ†
μĉβ〉corr〈ĉ†

α ĉν〉corr

− 1

Z

∑
γ

(Vβγ − Vμγ )〈n̂γ ĉ†
α ĉν〉corr〈ĉ†

μĉβ〉corr − 1

Z

∑
γ

(Vμγ − Vνγ )〈n̂γ ĉ†
α ĉβ〉corr〈ĉ†

μĉν〉corr

− Vαβ

Z
(〈n̂β〉 − 〈n̂α〉)〈ĉ†

α ĉν〉corr〈ĉ†
μĉβ〉corr − Vμν

Z
(〈n̂ν〉 − 〈n̂μ〉)〈ĉ†

α ĉν〉corr〈ĉ†
μĉβ〉corr

− Vαν

Z
(〈n̂α〉 − 〈n̂ν〉)〈ĉ†

α ĉβ〉corr〈ĉ†
μĉν〉corr − Vβμ

Z
(〈n̂μ〉 − 〈n̂β〉)〈ĉ†

α ĉβ〉corr〈ĉ†
μĉν〉corr (C27)
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contains additional terms compared to (B11) due to the presence of the charge density wave. A transformation of (C26) and
(C27) to Fourier space and a subsequent rotation in sublattice space leads to

i∂t h
abcd
p1,p2,p3

= ( − Ea
p1

+ Eb
p2

− Ec
p3

+ Ed
p1+p2+p3

)
habcd

p1,p2,p3
+ Sabcd

p1,p2,p3,1/Z3 + O(1/Z4) (C28)

with

Sabcd
p1,p2,p3,1/Z3 =

∑
X

Oa
X (p1)Ob

X̄ (p2)Oc
X̄ (p3)Od

X (p1 + p2 + p3)Vp2+p3 (nX̄ − nX )
[

f c
p3

f d
p1+p2+p3

− nX f c
p3

− nX̄ f d
p1+p2+p3

]
+

∑
X

Oa
X (p1)Ob

X (p2)Oc
X (p3)Od

X (p1 + p2 + p3)
[(

Eb
p2

− Ea
p1

)
f c
p3

f d
p1+p2+p3

− nX Ec
p3

f d
p1+p2+p3

+ nX Ed
p1+p2+p3

f c
p3

]
+

∑
X

gXcb
p3,p2

[(
Ea

p1
− Ed

p1+p2+p3

)
Oa

X (p1)Od
X (p1 + p2 + p3) − Vp2+p3 Oa

X (p1)Od
X (p1 + p2 + p3)

(
f a
p1

− nX
)

+ Vp2+p3 Oa
X̄ (p1)Od

X̄ (p1 + p2 + p3)
(

f d
p1+p2+p3

− nX̄
)]

− ({a, p1} ↔ {c, p3}) + ({a, p1} ↔ {c, p3}, {b, p2} ↔ {d,−p1 − p2 − p3}) − ({b, p2} ↔ {d,−p1 − p2 − p3}) .

(C29)

5. Boltzmann dynamics

As in the previous section, the differential equations for the three-point correlators (C22) and the four-point correlators (C28)
are solved within Markov approximation. When the resulting expressions are inserted into the evolution equation for the particle
and hole distribution functions (C18), we find

i∂t f a
k = −

∫
q

∑
X,b

Vk+q
iOb

X (q)Oa
X (k)

i
(
Eb

q − Ea
k

) − ε

[
SX̄ ,ba

q,k,1/Z2 +
∫

p

∑
c,d

(
Ed

k+q+p − Ec
p

) iOc
X (p)Od

X (k + q + p)Scdba
p,−k−q−p,q,1/Z3

i
(
Ec

p − Ed
k+q+p + Eb

q − Ea
k

) − ε

]
− c.c.

(C30)

After some algebra and taking the continuum limit, one can show that the Boltzmann equations take the form

∂t f d
k = − 2π

∫
q,p

∑
a,b,c

Mabcd
p+q,p,k−q,kδ

(
Ea

p+q − Eb
p + Ec

k−q − Ed
k

)[
f d
k f b

p

(
1 − f c

k−q

)(
1 − f a

p+q

) − f a
p+q f c

p−q

(
1 − f d

k

)(
1 − f b

p

)]
(C31)

with the transition matrix elements given by

Mabcd
p+q,p,k−q,k =

∑
X,Y

VqOa
X (p + q)Ob

X (p)Oc
X̄ (k − q)Od

X̄ (k)

× [
VqOa

Y (p + q)Ob
Y (p)Oc

Ȳ (k − q)Od
Ȳ (k) − Vk−p−qOa

Y (p + q)Ob
Ȳ (p)Oc

Ȳ (k − q)Od
Y (k)

]
. (C32)

6. Charge density background

The collision dynamics has also an impact on the charge density background. We know from (C2) that the change of the
local charge density is determined by the off-diagonal correlation functions f corr,aā

k . From the relation (C11), we find that their
dynamics is determined by the Boltzmann collisions of the particle and hole distribution functions f a

k . After some algebra one
arrives at the result

∂t n
A = − ∂t n

B = −2π

∫
k,q,p

∑
a,b,c,d

Nabcd
p+q,p,k−q,kδ

(
Ea

p+q − Eb
p + Ec

k−q − Ed
k

)
× [

f d
k f b

p

(
1 − f c

k−q

)(
1 − f a

p+q

) − f a
p+q f c

p−q

(
1 − f d

k

)(
1 − f b

p

)]
(C33)

with

Nabcd
p+q,p,k−q,k = Jk

ωk

∑
X,Y

VqOa
X (p + q)Ob

X (p)Oc
X̄ (k − q)Od̄

X̄ (k)

× [
VqOa

Y (p + q)Ob
Y (p)Oc

Ȳ (k − q)Od
Ȳ (k) − Vk−p−qOa

Y (p + q)Ob
Ȳ (p)Oc

Ȳ (k − q)Od
Y (k)

]
. (C34)
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